Factors affecting photosynthesis

There are three main factors affecting photosynthesis and several corollary factors. The three main are:

- Light irradiance and wavelength
- Carbon dioxide concentration
- Temperature

Light intensity (Irradiance), wavelength and temperature

In the early 1900s Frederick Frost Blackman along with Gabrielle Matthaei investigated the effects of light intensity (irradiance) and temperature on the rate of carbon assimilation.

- At constant temperature, the rate of carbon assimilation varies with irradiance, initially increasing as the irradiance increases. However at higher irradiance this relationship no longer holds and the rate of carbon assimilation reaches a plateau.
- At constant irradiance, the rate of carbon assimilation increases as the temperature is increased over a limited range. This effect is only seen at high irradiance levels. At low irradiance, increasing the temperature has little influence on the rate of carbon assimilation.

These two experiments illustrate vital points: firstly, from research it is known that photochemical reactions are not generally affected by temperature. However, these experiments clearly show that temperature affects the rate of carbon assimilation, so there must be two sets of reactions in the full process of carbon assimilation. These are of course the light-dependent 'photochemical' stage and the light-independent, temperature-dependent stage. Secondly, Blackman's experiments illustrate the concept of limiting factors. Another limiting factor is the wavelength of light. Cyanobacteria which reside several meters underwater cannot receive the correct wavelengths required to cause photoinduced charge separation in conventional photosynthetic pigments. To combat this problem a series of proteins with different pigments surround the reaction center. This unit is called a phycobilisome.

Carbon dioxide

As carbon dioxide concentrations rise, the rate at which sugars are made by the light-independent reactions increases until limited by other factors. One reason for this is that RuBisCO, the enzyme fixing the carbon dioxide in the light-dependent reactions, has a binding affinity for both carbon dioxide and oxygen. Thus, an increase in the concentration of carbon dioxide increases the probability of RuBisCO fixing carbon dioxide instead of oxygen.

A reduced RuBisCO oxygenase activity is advantageous to plants for several reasons.

- One product of oxygenase activity is phosphoglycolate (2 carbon) instead of 3-phosphoglycerate (3 carbon). Phosphoglycolate cannot be metabolized by the Calvin-Benson cycle and represents carbon lost from the cycle. A high oxygenase activity, therefore, drains the sugars that are required to recycle ribulose 5-bisphosphate and for the continuation of the Calvin-Benson cycle.
- Phosphoglycolate is quickly metabolized to glycolate that is toxic to a plant at a high concentration; it inhibits photosynthesis.
- Salvaging glycolate is an energetically expensive process that uses the glycolate pathway and only 75% of the carbon is returned to the Calvin-Benson cycle as 3-phosphoglycerate.
A highly simplified summary is: 2 glycolate + ATP --> 3-phophoglycerate + carbon dioxide + ADP +NH3

The salvaging pathway for the products of RuBisCO oxygenase activity is more commonly known as photorespiration since it is characterized by light dependent oxygen consumption and the release of carbon dioxide.

Corollary factors

- Amount of water
- Leaf morphology
- Leaf nitrogen content
- Molecular carriers such as NADP and FAD


Go to Start | This article uses material from the Wikipedia