The eukaryotic cytoskeleton. Actin filaments are shown in red, microtubules in green, and the nuclei are in blue.

Microtubules are protein structures found within cells, one of the components of the cytoskeleton. They have diameter of ~ 24 nm and varying length from several micrometers to possible millimeters in axons of nerve cells. Microtubules serve as structural components within cells and are involved in many cellular processes including mitosis, cytokinesis, and vesicular transport.


Microtubules are polymers of α- and β-tubulin dimers. The tubulin dimers polymerize end to end in protofilaments. The protofilaments then bundle in a hollow cylindrical filaments. Typically, the protofilaments arrange themselves in an imperfect helix with one turn of the helix containing 13 tubulin dimers each from a different protofilament. The image above illustrates a small section of microtubule, a few αβ dimers in length.

Another important feature of microtubule structure is polarity. Tubulin polymerizes end to end with the a subunit of one tubulin dimer contacting the &ha;β subunit of the next. Therefore, in a protofilament, one end will have the a subunit exposed while the other end will have the β subunit exposed. These ends are designated (-) and (+) respectively. The protofilaments bundle parallel to one another, so in a microtubule, there is one end, the (+) end, with only β subunits exposed while the other end, the (-) end, only has a subunits exposed.

Organization within Cells

Microtubules are nucleated and organized by the microtubule organizing centers (MTOCs), such as centrosomes and basal bodies. They are part of a structural network (the cytoskeleton) within the cell's cytoplasm, but, in addition to structural support, microtubules are used in many other processes, as well. They are capable of growing and shrinking in order to generate force, and there are also motor proteins that move along the microtubule. A notable structure involving microtubules is the mitotic spindle used by eukaryotic cells to segregate their chromosomes correctly during cell division. Microtubules are also part of the cilia and flagella of eukaryotic cells (prokaryote flagella are entirely different).

Nucleation and growth

Polymerization of microtubules is nucleated in a microtubule organizing center. Contained within the MTOC is another type of tubulin, Y-tubulin, which is distinct from the alpha and beta subunits which compose the microtubules themselves. The Y-tubulin combines with several other associated proteins to form a circular structure known as the "Y-tubulin ring complex." This complex acts as a scaffold for α/β tubulin dimers to begin polymerization; it acts as a cap of the (-) end while mictrotubule growth continues away from the MTOC in the (+) direction.

Chemical effects on microtubule dynamics

Microtubule dynamics can also be altered by drugs. For example, the taxane drug class (e.g. paclitaxel or docetaxel), used in the treatment of cancer, blocks dynamic instability by stabilizing GDP-bound tubulin in the microtubule. Thus, even when hydrolysis of GTP reaches the tip of the microtubule, there is no depolymerization and the microtubule does not shrink back. Nocodazole and Colchicine have the opposite effect, blocking the polymerization of tubulin into microtubules.

Motor proteins

In addition to movement generated by the dynamic instability of the microtubule itself, the fibers are substrates along which motor proteins can move. The major microtubule motor proteins are kinesin, which generally moves towards the [+] end of the microtubule, and dynein, which generally moves towards the [-] end.


Go to Start | This article uses material from the Wikipedia